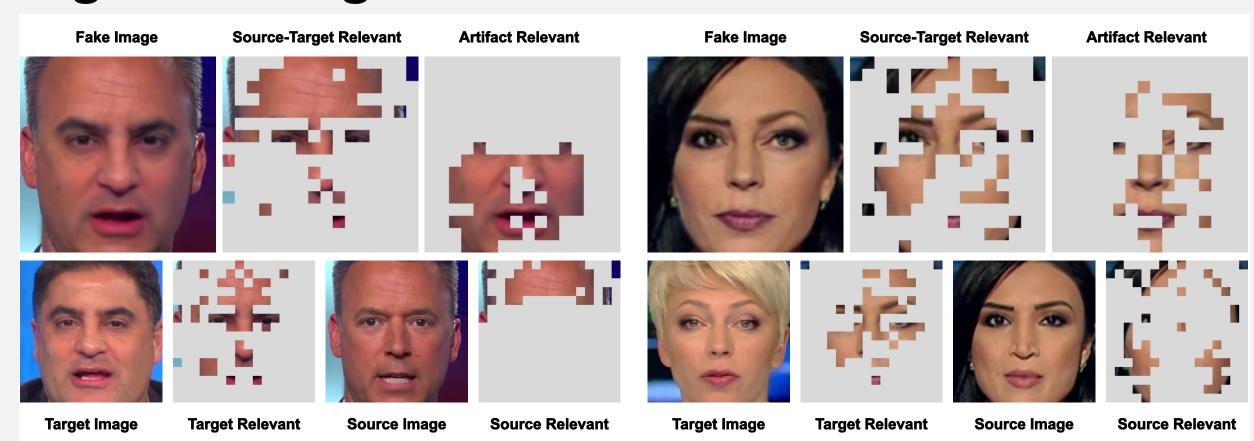
Explaining Deepfake Detection by Analysing Image Matching NEGVII 时祝 Shichao Dong, Jin Wang, Jiajun Liang, Haoqiang Fan, Renhe Ji

Introduction

- Considering it as a binary classification task, deepfake detection models have achieved great success in detecting various manipulated media.
- In this paper, we focus on understanding how these models learn artifact features of images when just supervised by binary labels (real/fake) from the novel perspective of *image matching*.

Image matching



- > The face of the source image is manipulated with representations of the target image to generate the corrseponding fake image.
- > The above fake, source and target image are considered as matching images, termed as the FST-Matching.

Algorithm

From the perspective of FST-Matching, we propose three hypotheses and design several metrics to verify them.

Artifact representations for deepfake detection models

Hypothesis 1: Deepfake detection models indicate real/fake images based on visual concepts that are neither sourcerelevant nor target-relevant, that is, considering such visual concepts as artifact-relevant.

- \succ We train a deepfake detection encoder $v_d(\cdot)$, a source encoder $v_s(\cdot)$ and a target encoder $v_t(\cdot)$ to indicate the artifact, source, and target relevant visual concepts.
- \succ The source/target encoder $v_s(\cdot)/v_t(\cdot)$ learns to classify each fake image and the corresponding source/target image as the same category.
- > We use the Shapley value [1] to evaluate regional contributions $\varphi_{v_d}/\varphi_{v_s}/\varphi_{v_t}$ of visual concepts to the prediction of each encoder.

[1]Shapley, L.S.: A value for n-person games, contributions to the theory of games, 2, 307–317 (1953)

 \succ To verify the hypothesis, we design a metric to evaluate the intensities of the intersections between these visual concepts.

$$Q_{\tau} = \frac{(1 - M_{\tau}) \cdot \varphi_{v_d}}{\sum \left[1 - M_{\tau}\right]} - \frac{1}{2}$$

where $M_{\tau} = I(max(\varphi_{v_s}, \varphi_{v_t}) > \tau)$ denotes the most source/target relevant visual concepts.

 $\geq Q_{\tau} > 0$ represents that artifact-relevant visual concepts are more related to source/target-irrelevant visual concepts and vice versa. Learning the artifact representations

Hypothesis 2: Besides the supervision of binary labels, deepfake detection models implicitly learn artifact-relevant visual concepts through the FST-Matching in the training set.

- > To verify the hypothesis, we train two models with paired and unpaired training set, which are downsampled from original dataset.
- > In the paired training set, the real images are only the corresponding source images and target images of fake images.
- > In the unpaired images, the real images do not correspond to any fake images but are of the same number as the paired training set.

Vulnerability of artifact representations to video compression

Hypothesis 3: Implicitly learned artifact visual concepts through the FST-Matching in the raw training set are vulnerable to the video compression.

> To verify the hypothesis, we design the stability metric of implicitly learned artifact visual concepts to the video compression.

 $\delta_{v_d} = E_{cmp \in \{c23, c40\}} [cos(\varphi_{v_d}^{cmp}, \varphi_{v_d}^{raw})]$

where $\varphi_{v_d}^{cmp}/\varphi_{v_d}^{raw}$ represents the regional contributions to the predictions of the v_d when tested on the compressed/raw images.

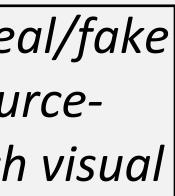
> We also evaluate the stability of the learned source/target visual concepts for v_s/v_t on compressed videos for more comparisons.

Experiments

Verification of hypothesis 1

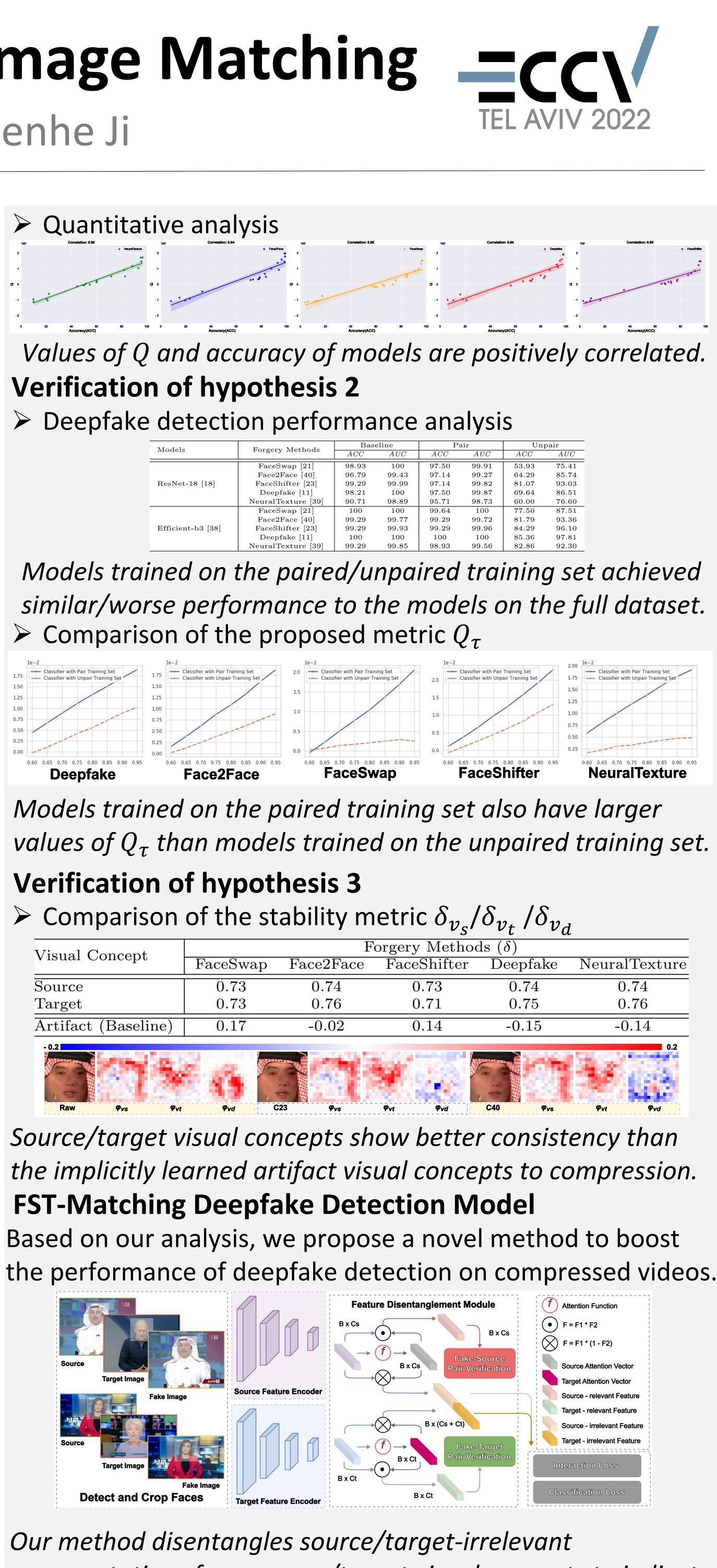
> Qualitative analysis

Source/Target Relevant Visual Concept Intersection Visual Con

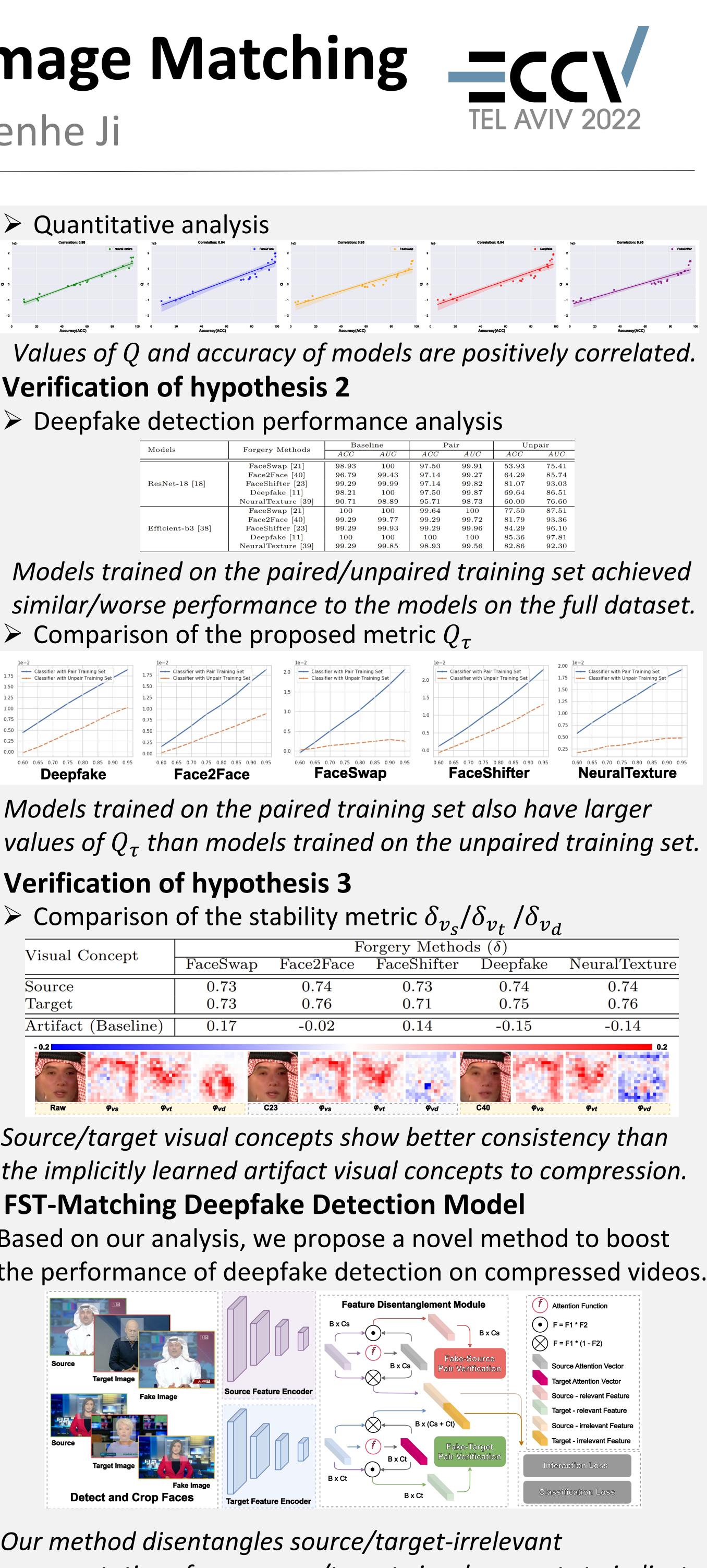


 $M_{\tau} \cdot \varphi_{v_d}$ $\sum M_{\tau}$

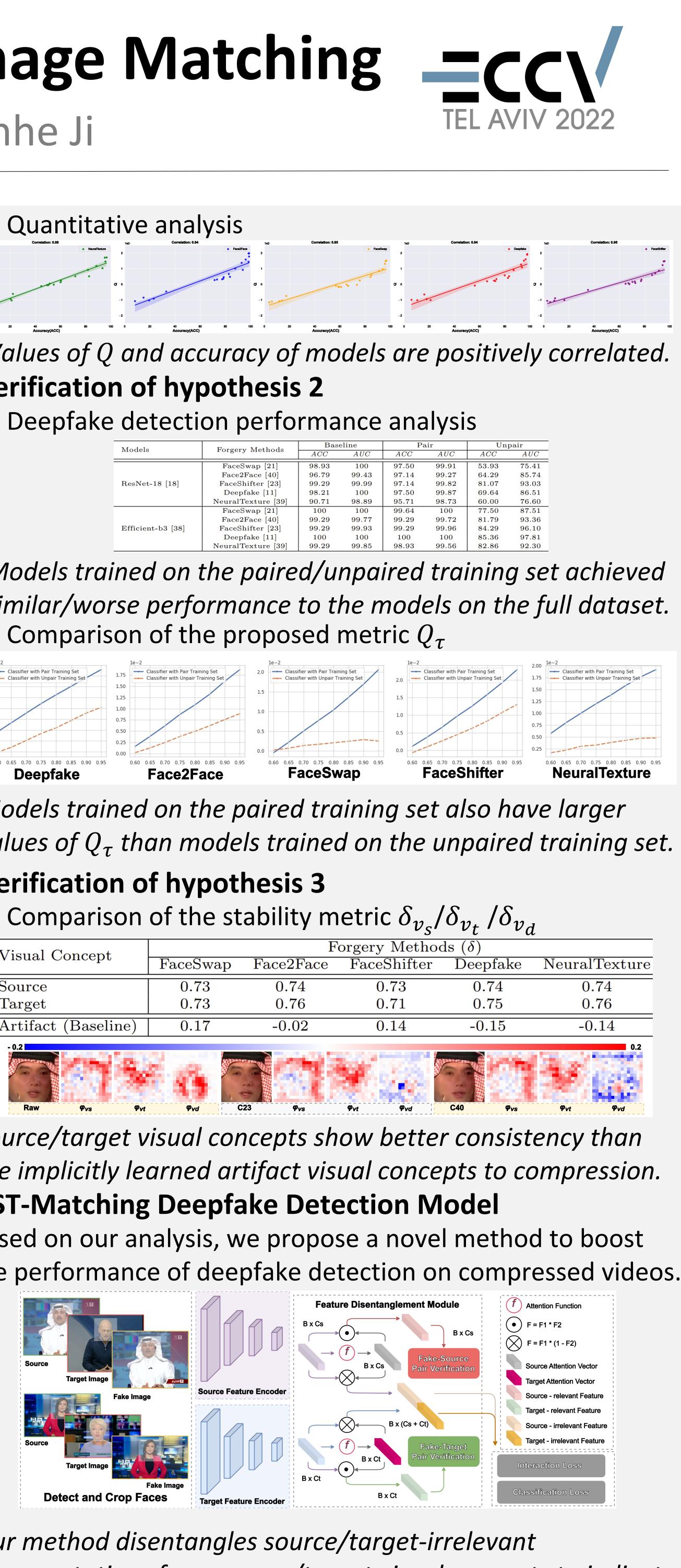
Artifact-relevant visual concepts barely have intersections with source/target-relevant visual concepts.

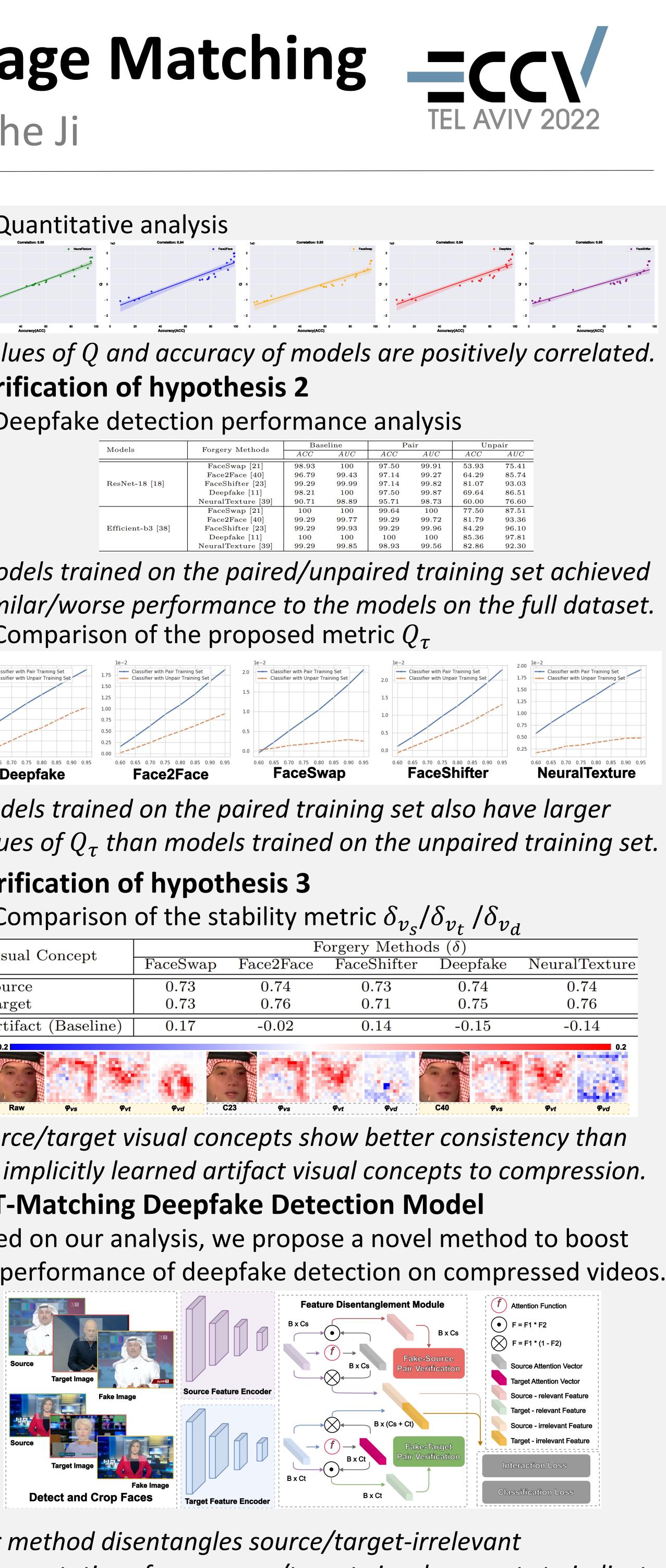


Models	Fo
ResNet-18 [18]	F
	F
	Fa
	I
	Neı
Efficient-b3 [38]	F
	F
	Fa
	I
	Neı



Visual Concept	FaceSwap
<u></u>	-
Source	0.73
Target	0.73
Artifact (Baseline)	0.17
- 0.2	
	1999





representations from source/target visual concepts to indicate images, achieving great performance on compressed videos.